

AQUATIC INVERTEBRATES AND HABITAT AT A FIXED STATION ON THE SHIELDS RIVER, PARK COUNTY, MONTANA

July 23, 2001

A report to the Montana Department of Environmental Quality Helena, Montana

by Wease Bollman Rhithron Associates, Inc. Missoula, Montana May 2002

INTRODUCTION

This report is one of 38 brief interpretive summaries of data assembled as part of a statewide, multi-year study conducted by the Montana Department of Environmental Ouality (MT DEQ). Each report discusses information generated from a single benthic invertebrate sample collection and habitat evaluation at a fixed station established on a gauged river or high-order tributary. The present treatise focuses on the aquatic community sampled on the Shields River near Livingston, Montana on July 23, 2001. The sample site was located by GPS reading at 45° 43' 35" N, 110° 27' 49" W, lying within the Montana Valley and Foothill Prairie Ecoregion (Woods et al. 1998). The sample was collected by personnel of MT DEQ. Sampling effort consisted of either a composite of four Hess samples, or a one-minute kicknet collection (Bukantis 1998). Habitat parameters were evaluated using the MT DEQ Macroinvertebrate Habitat Assessment Field Form for streams with riffle/run prevalence. Invertebrate samples were processed and animals identified by Rhithron Associates, Inc. Analysis of invertebrate assemblages was accomplished by applying the revised method (Bollman 1998) for streams of Western Montana's ecoregions. The method uses a multimetric battery to evaluate disturbance to biotic integrity.

The revised bioassessment metric battery and its scoring criteria have not been evaluated for application to higher-order streams and rivers; to date, no bioassessment method has been contrived for these waterways in Montana. Thus, the method used here is likely to have limitations in its applicability to the sites in this study. For example, 24 of the riverine or high-order waterways sampled for the fixed station study were located within Western Montana ecoregions and were sampled between July 23 and August 25, 2001. Mean water temperature for these sites at the time of sampling was 19.8°C (median = 19.4°). Temperatures ranged from 15.5°C (Kootenai River near Libby) to 25.3°C (Jefferson River near Three Forks). Ninety-eight sites from Western Montana were used to assemble the revised metric battery and to test it for sensitivity in detecting impairment, to establish scoring criteria, and to improve robustness of bioassessment. These 98 sites were mainly second and third order streams; the sampling season roughly corresponded to that of the fixed-station study. Mean water temperature for these sites at the time of sampling was 15° C (median = 14° C). Natural variations in benthic community composition and structure along longitudinal and thermal gradients are well known phenomena. Thus, scores and classifications were established for much smaller systems with significantly lower water temperatures; impairment classifications and use support designations in this study must be interpreted with care. Results from the application of other metric batteries may be found in the Appendix.

RESULTS AND DISCUSSION

Table 1 itemizes the nine evaluated habitat parameters and shows the assigned scores for each, as well as the integrated score and condition category.

Overall habitat conditions scored sub-optimally at this site on the Shields River. Benthic substrate was perceived to be somewhat monotonous, and substrate particles were described as "cobble concreted on bottom", implying that embeddedness may have been worse than the parameter score implies. Heavy sediment was observed in pools. Streambanks were judged moderately stable, with areas of erosion on both sides of the channel noted. Bank vegetation protection was appraised as sub-optimal. The riparian zone was abbreviated on both sides of the river.

Max. possible score	Parameter	Shields River near Livingston
10	Riffle development	10
10	Benthic substrate	8
20	Embeddedness	17
20	Channel alteration	12
20	Sediment deposition	10
20	Channel flow status	15
20	Bank stability: left / right	5 / 6
20	Bank vegetation: left / right	8 / 8
20	Vegetated zone: left / right	8 / 6
160	Total	113
	Percent of maximum CONDITION*	71 SUB-OPTIMAL

Table 1. Stream and riparian habitat assessment for a fixed station on the Shields River.

 July 2001.

*Condition categories: Optimal > 80% of maximum score; Sub-optimal 75 - 56%; Marginal 49 - 29%; Poor <23%. Adapted from Plafkin et al. 1998.

 Table 2. Metric values, scores, and bioassessment for a fixed station on the Shields

 River. The revised bioassessment metric battery (Bollman 1998) was used for the

 evaluation. July 2001.

	Shields River near Livingston		
METRICS	METRIC VALUES	METRIC SCORES	
Ephemeroptera richness	5	2	
Plecoptera richness	0	0	
Trichoptera richness	5	3	
Number of sensitive taxa	0	0	
Percent filterers	29.1	0	
Percent tolerant taxa	42.5	0	
	TOTAL SCORE (max.=18)	5	
	PERCENT OF MAX.	28	
	Impairment elassification	MODERATE	
	USE SUPPORT	PARTIAL	

Bioassessment results are given in Table 2. When this bioassessment method is applied to these data, scores indicate that this site on the Shields River is moderately impaired and only partially supports designated uses.

The elevated biotic index (5.18) and low numbers of mayfly taxa (5) suggest that nutrient enrichment and/or warm water temperatures may impair water quality. The

measured water temperature at the time of sampling was 22.9°C, which is higher than the mean temperature of riverine sites in Western Montana visited for the fixed stations study. The taxonomic composition of the sampled assemblage also exhibits some evidence of nutrient enrichment; animals in taxa tolerant of saprobic conditions comprised 43% of organisms collected. These included the caddisflies *Helicopsyche borealis* and *Hydroptila* sp. Moderate abundance of the latter suggests that some filamentous algae may have been present at the site.

Only eleven "clinger" taxa were taken in the sample, which may reflect contamination of hard substrate habitats by fine sediment deposition. Taxa richness (26) was depressed compared to expectations, and predators were rare in the assemblage. This suggests limited instream habitats; these may have been compromised by sediment deposition, blooms of filamentous algae, embedded substrate, or other factors. The absence of stonefly taxa may have been associated with disruptions of reach-scale habitat features such as channel integrity, streambank stability, or riparian zone function.

All functional components of a healthy benthic assemblage were present at the site, but predator fauna were underrepresented.

CONCLUSIONS

- Warm water temperatures and nutrient enrichment may limit the quality of the benthic fauna at this site.
- Some evidence of fine sediment deposition can be discerned in the data.
- Low taxa richness and dearth of predators suggest limited instream habitats.
- The bioassessment score appears to under-estimate the quality of the benthic fauna, but the impairment classification appears appropriate, given the tolerance characteristics and functional composition of the assemblage.

LITERATURE CITED

Bollman, W. 1998. Improving Stream Bioassessment Methods for the Montana Valleys and Foothill Prairies Ecoregion. Master's (M.S.) Thesis. University of Montana. Missoula. Montana.

Bukantis. R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft, April 22, 1997. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Woods, A.J., Omernik, J. M. Nesser, J.A., Shelden, J., and Azevedo, S. H. 1999. Ecoregions of Montana. (Color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia. US Geological Survey.

APPENDIX

Taxonomic data and summaries

Shields River

July 2001

Aquatic Invertebrate Taxonomic Data

Site Name: Shields River near Livingston	Date	: 7/23/01			
Site ID: Y03SHIER01	Approx. percent of sample used 43				
Taxon	(Quantity	Percent	HBI	FFG
Nais bretscheri		35	11.44	8	CG
Imma Tubificid with cap, setae		4	1.31	10	CG
Sphaerium sp.		1	0.33	8	CF
Physidae		3	0.98	8	SC
Acari		2	0.65	5	PA
Total Mise. Taxa		45	14.71		
Acentrella sp. early instar		1	0.33	4	CG
Baetis tricaudatus		19	6.21	4	CG
Attenella margarita		3	0.98	2	CG
Paraleptophlehia sp.		1	0.33	1	CG
Tricorythodes minutus		22	7.19	4	CG
Total Ephemeroptera		-46	15.03		
Brachycentrus occidentalis		13	4.25	2	CF
Glossosoma sp.		2	0.65	0	SC
Helicopsyche borealis		15	4 90	3	SC
Hydropsyche sp.		61	19.93	5	CF
Hydroptila sp.		23	7.52	6	PH
Total Trichoptera		114	37.25		_
Optioservus sp.		45	14.71	5	SC
Zaitzevia sp.		3	0.98	5	CG
Total Coleoptera		-48	15.69		
Atherix sp.		3	0.98	4	PR
Antocha sp.		3	0.98	3	CG
Total Diptera		6	1.96		
Cricotopus (Isocladius) Gr.		6	1.96	7	CG
Eukiefferiella Gracei Gr.		1	0.33	8	CG
Paratanytarsus sp.		4	1.31	6	UN
Polypedilum sp.		6	1.96	6	SH
Rheotanytarsus sp.		14	4.58	6	CF
Thienemannimy1a Gr.		ł	0.33	5	PR
Tvetenia sp.		15	4.90	5	CG
Total Chironomidae		47	15.36		
Gr	and Total	306	100.00		

Aquatic Invertebrate Summary		
Site Name: Shields River near Livingston		Date: 7/23/01
SAMPLE TOTAL	306	
EPT abundance	160	
TAXA RICHNESS	26	
Number EPT taxa	10	
Percent EPT	52 29	

TAXONOMIC COMPOSITION

FUNCTIONAL COMPOSITION

GROUP	PERCENT	#TAXA	ABUNDANCE
Predator	131	2	4
Parasite	0.65	1	2
Gatherer	36 93	12	113
Filterer	29.08	4	89
Herbivore	0.00	0	0
Piercer	7 52	1	23
Scraper	21 24	4	65
Shredder	1 96	1	6
Xylophage	0.00	0	0
Omnivore	0.00	0	0
Linknown	1.21	1	A

COMMUNITY TOLERANCES

Sediment tolerant taxa	4
Percent sediment tolerant	10.40
Sediment sensitive taxa	1
Percent sediment sensitive	0.65
Metals tolerance index (McGuire)	4 24
Cold stenotherm taxa	0
Percent cold stenotherms	0.00

Misc. Taxa
🔲 Odonata
Ephemeroptera
□ Plecoptera
Hernptera
Megaloptera
Trichoptera
Lepidoptera
📓 Coleoptera
A see and the second

Predator Parasite 🖾 Gatherer Filterer Herbivore Piercer

□ Scraper Shredder □ Xylopbage Onnivore 🖪 Unknown

	SAPROBITY
	Hilsenhoff Biotic Ind
	DIVERSITY
	Shannon H (loge)
	Shannon H (log2)
	Simpson D
	VOLTINISM
	TYPE
laxa	Multivoltine
ta	Univoltine
eroptera	Semivoltine
tera	TAXA CHARACTE
lera	,
optera	Tolerant
piera	Intolerant
optera	Chnger
olera	
a	BIOASSESSMENT
onndae	B-IBI (Karr et al.)
	METRIC
	Taxa richness
	E richness
	P richness
	T richness
	Long-lived
	Sensitive richness
	%tolerant
	%predators
	Clinger richness
	%dominance (3)

Site ID: Y03SHIER01 DOMINANCE

TAXON Hydropsyche sp

Optioservus sp Nais bretscheri

Hydrophia sp		23	7 52	
Tricorythodes minu	1115	22	7 19	
SUBTOTAL 5 DOM	INANTS	186	60 78	
Baetis tricaudatus		19	6 21	
Helicopsyche borealis		15	4 90	
Tvetenia sp		15	4 90	
Rheotanytarsus sp		14	4 58	
Brachycentrus occu	lentalis	13	4 25	
TOTAL DOMINAN	TTS	262	85 62	
SAPPORITS				
Hilsenhoff Biotic In	dex		518	
DI UNCIPI				
DIVERSITY				
Shannon H (loge)			2.63	
Shannon H (log2)			3 80	
Simpson D			0.10	
VOLTINISM				
TYPE		ABUNDANCE	PERCENT	
Multivoltine		85	27 70	
Univoltine		160	52 37	
Semivoltine		61	19.93	
TAXA CHARACT	ERS			
	#TAXA	ABUNDANCE	PERCENT	
Tolerant	7	130	42 48	
Intolerant	0	0	0.00	
Chaver	ů	180	58.82	
Children		100	50.02	
BIOASSESSMEN	T INDICES			
B-JBI (Karr et al.)	1/41.172		SCODE	
METRIC	VALUE		SCORE	
Taxa richness	26		3	
E richness	5		3	
P richness	0		1	
T richness	5		3	
Long-lived	2		1	
Sensurve richness	0		1	
%tolerant	42 48		3	
%predators	1 3 1		1	
Chnger richness	11		3	
%dominance (3)	46 08		5	
		TOTAL SCORE	24	48 %
MONTANA DEQI	METRICS (Bukantis 1998)	Volley r und	Mumbus
METRIĆ	VALUE	Please Ecoregions	Foothills	Ecoregions
Taxa richness	26	3	2	2
EPT richness	10	3	0	0
Biotic Index	5.18	2	1	0
%Dominant taxon	10.03	3	3	3
%Collector	66.01	2	2	2
0.EDT	\$2.20	2	2	ĩ
ALLE I	34.49	2	4	
Sharanon Diversity	3 80	2	2	0
vescrapers +Shrede	23.20	2	4	0
Predator taxa	2	0		
%Multivoltine	27 70	3		
%H of T	53.5		3	
TOTAL SCORES		24	15	8
PERCENT OF MAXIMUM		80.00	62 50	3810
IMPAIRMENT CLASS		SLIGHT	SLIGHT	MODERATE

ABUNDANCE PERCENT

61 45

35 11 44

19 93 14 71

Montana DEQ metric batteries

